skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nicoletti, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, there has been much progress in understanding stationary measures for colored (also called multi-species or multi-type) interacting particle systems, motivated by asymptotic phenomena and rich underlying algebraic and combinatorial structures (such as nonsymmetric Macdonald polynomials). In this paper, we present a unified approach to constructing stationary measures for most of the known colored particle systems on the ring and the line, including (1) the Asymmetric Simple Exclusion Process (multispecies ASEP, or mASEP); (2) the q-deformed Totally Asymmetric Zero Range Process (TAZRP) also known as the q-Boson particle system; (3) the q-deformed Pushing Totally Asymmetric Simple Exclusion Process (q-PushTASEP). Our method is based on integrable stochastic vertex models and the Yang-Baxter equation. We express the stationary measures as partition functions of new "queue vertex models" on the cylinder. The stationarity property is a direct consequence of the Yang-Baxter equation. For the mASEP on the ring, a particular case of our vertex model is equivalent to the multiline queues of Martin (arXiv:1810.10650). For the colored q-Boson process and the q-PushTASEP on the ring, we recover and generalize known stationary measures constructed using multiline queues or other methods by Ayyer-Mandelshtam-Martin (arXiv:2011.06117, arXiv:2209.09859), and Bukh-Cox (arXiv:1912.03510). Our proofs of stationarity use the Yang-Baxter equation and bypass the Matrix Product Ansatz used for the mASEP by Prolhac-Evans-Mallick (arXiv:0812.3293). On the line and in a quadrant, we use the Yang-Baxter equation to establish a general colored Burke's theorem, which implies that suitable specializations of our queue vertex models produce stationary measures for particle systems on the line. We also compute the colored particle currents in stationarity. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. We survey the connections between the six-vertex (square ice) model of 2D statistical mechanics and random matrix theory. We highlight the same universal probability distributions appearing on both sides, and also indicate related open questions and conjectures. We present full proofs of two asymptotic theorems for the six-vertex model: in the first one the Gaussian Unitary Ensemble (GUE) and GUE–corners process appear; the second one leads to the Tracy–Widom distribution F 2 F_2 . While both results are not new, we found shorter transparent proofs for this text. On our way we introduce the key tools in the study of the six-vertex model, including the Yang–Baxter equation and the Izergin–Korepin formula. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026